Nutrition & Biosciences

AQUACOAT® ECD: CRITICAL FORMULATION
ATTRIBUTES OF PORE FORMER

Technical Memorandum

At DuPont, we aim to help our pharma customers with both everyday challenges and future solutions. Armed with essential excipients and vital expertise, our broad portfolio is designed to deliver performance and cost advantages in various oral solid dosage forms.

Pore former (water-soluble additives)
As ethyl cellulose is insoluble in water, films formed from Aquacoat® ECD may not be permeable enough to support all target release profiles. A pore former or water-soluble additive is included in the formulation to increase film permeability.

The pore former dissolves in the aqueous environment during the dissolution phase, leaving behind water filled channels that increase the drug’s release rate.

Type and amount of pore former
Various water-soluble polymers have been evaluated for pore former functionality (Table 1).

Compatibility with Aquacoat® ECD and other observed characteristics should be taken into account when determining the suitability of these polymers as pore formers at different use levels and in different applications. Poly (vinyl alcohol)- Poly (ethylene glycol) graft copolymer (PVA-PEG graft copolymer) has been studied extensively for pore former functionality. The PVA-PEG graft copolymer has demonstrated good film-forming properties and is readily soluble in water, producing a relatively low viscosity coating solution. The PVA-PEG graft copolymer is compatible with Aquacoat® ECD at all concentrations and facilitates film coalescence during the coating process, producing stable films in long-term storage conditions. Optimizing both water-soluble additive levels and coating weight gain helps achieve the targeted release rate. The release rate of the drug is thus influenced by the amount of pore former added to the formulation: higher concentrations of pore former produce faster release rates due to the increase in film permeability (Figure 1). Water-soluble additives also improve

Table 1. Commonly used pore formers

<table>
<thead>
<tr>
<th>Water-soluble additives category</th>
<th>List</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymers</td>
<td>Poly (vinyl alcohol) - Poly (ethylene glycol) graft copolymer</td>
<td>Compatible with Aquacoat® ECD at all concentrations</td>
</tr>
<tr>
<td></td>
<td>Polyvinylpyrrolidone K:30</td>
<td>Compatible with Aquacoat® ECD at all concentrations</td>
</tr>
<tr>
<td></td>
<td>Hydroxypropyl methyl cellulose</td>
<td>Compatible at less than 15% w/w. Higher levels can cause aggregation and formation of inhomogeneous films</td>
</tr>
<tr>
<td></td>
<td>Alginate</td>
<td>Compatible with Aquacoat® ECD at lower concentrations</td>
</tr>
<tr>
<td></td>
<td>Carrageenans</td>
<td>Compatible with Aquacoat® ECD at all concentrations</td>
</tr>
<tr>
<td></td>
<td>Maize starch</td>
<td>Compatible with Aquacoat® ECD at all concentrations</td>
</tr>
<tr>
<td>Sugars</td>
<td>Lactose</td>
<td>Compatible with Aquacoat® ECD but show some crystallization tendencies at accelerated storage conditions</td>
</tr>
</tbody>
</table>
release rate reproducibility, compensating for variability in processing conditions where even a small change in film thickness can decrease the drug’s release rate. This role is of special importance in drugs with low solubility that may be challenged by the hydrophobic nature of ethyl cellulose films. Here, the addition of a small amount of water-soluble additive helps preserve the desired release rate at the same coating level. The recommended concentration of pore former can range from 5-25% w/w based on ethyl cellulose solid content.

Theophylline pellets coated with Aquacoat® ECD and various concentrations of PVA-PEG graft copolymer at a coating level of 20% w/w; dissolution medium pH 6.8 phosphate buffer

Figure 1: PVA-PEG graft copolymer concentration effect on drug release rate

REFERENCES


The information contained herein is based on data known to DuPont or its affiliates at the time of preparation of the information and believed by them to be reliable. This is business-to-business information intended for food, beverage and supplement producers, and is not intended for the final consumer of a finished food, beverage or supplement product. The information is provided “as is” and its use is at the recipient’s sole discretion and risk. It is the recipient’s sole responsibility to determine the suitability and legality of its proposed use of DuPont products for its specific purposes. Information and statements herein shall not be construed as licenses to practice, or recommendations to infringe, any patents or other intellectual property rights of DuPont or others.

DuPont™, the DuPont Oval Logo, and all trademarks and service marks denoted with ™, SM or ® are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted. © 2020 DuPont.