Chemistry of METHOCEL™

Cellulose Ethers - A Technical Review
Chemistry of METHOCEL™ Cellulose Ethers

METHOCEL™ cellulose ether products are available in two basic types: methylcellulose and hydroxypropyl methylcellulose.

Both types of METHOCEL™ have the polymeric backbone of cellulose, a natural carbohydrate that contains a basic repeating structure of anhydroglucose units.

Regulated Uses

Pharmaceuticals

Premium grades of METHOCEL™ products meet the specifications of the United States Pharmacopoeia (USP XXIII), European Pharmacopoeia (EP) and Japanese Pharmacopoeia (JP) and are listed as methylcellulose and hypromellose. In addition, methylcellulose (METHOCEL™ A products) is Generally Recognized As Safe (GRAS) by the U.S. Food and Drug Administration.

To support new drug applications in the United States, drug master files (DMFs) for these products are on file at the Bureau of Drugs of the U.S. Food and Drug Administration.

Comparison of METHOCEL™ Grades for Pharmaceutical Applications

<table>
<thead>
<tr>
<th>METHOCEL™ Premium Products:</th>
<th>K3 LV</th>
<th>K100 LV</th>
<th>K4M</th>
<th>K5M</th>
<th>K100M</th>
<th>E3 LV</th>
<th>E5 LV</th>
<th>E6 LV</th>
<th>E15 LV</th>
<th>E50 LV</th>
<th>E4M</th>
<th>E10M</th>
<th>VLV</th>
<th>A15 LV</th>
<th>A4C</th>
<th>A15C</th>
<th>A4M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (mPa.s 2% in water at 20°C)</td>
<td>2.4-3.6</td>
<td>80-120</td>
<td>2,663-4,970</td>
<td>13,275-24,780</td>
<td>75,000-140,000</td>
<td>2,4-3.6</td>
<td>4.0-6.0</td>
<td>4.9-7.2</td>
<td>12-18</td>
<td>40-60</td>
<td>2,663-4,970</td>
<td>9,525-17,780</td>
<td>2.3-3.3</td>
<td>12-18</td>
<td>320-480</td>
<td>1,298-2,422</td>
<td>2,663-4,970</td>
</tr>
<tr>
<td>If CR designation, methoxyl substitution</td>
<td>N/A</td>
<td>22.0-24.0%</td>
<td>22.0-24.0%</td>
<td>22.0-24.0%</td>
<td>22.0-24.0%</td>
<td>22.0-24.0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydroxypropoxyl substitution</td>
<td>7.0-12.0%</td>
<td>N/A</td>
<td>4.2-7.5%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>If CR designation, hydroxypropoxyl substitution</td>
<td>N/A</td>
<td>7.5-9.5%</td>
<td>7.5-9.5%</td>
<td>8.5-10.5%</td>
<td>9.5-11.5%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>8.5-10.5%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Loss on Drying (weight %)</td>
<td>5.0% Max</td>
</tr>
<tr>
<td>If CR designation, Particle size, % thru 40 mesh</td>
<td>N/A</td>
<td>≥ 99.0%</td>
<td>≥ 99.0%</td>
<td>≥ 99.0%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>≥ 99.0%</td>
<td>≥ 99.0%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>If CR designation, Particle size, % thru 100 mesh</td>
<td>N/A</td>
<td>≥ 50.0%</td>
<td>≥ 90.0%</td>
<td>≥ 90.0%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>≥ 90.0%</td>
<td>≥ 90.0%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>If CR designation, Particle size, % thru 230 mesh</td>
<td>N/A</td>
<td>50.0-80.0%</td>
<td>50.0-80.0%</td>
<td>58.0-80.0%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>50.0-80.0%</td>
<td>50.0-80.0%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(These are typical properties, not to be construed as specifications)

1 The former official monograph name of hypromellose was “hydroxypropyl methylcellulose” or “HPMC”
How to Prepare Aqueous Solutions of METHOCEL™ Cellulose Ethers

METHOCEL™ cellulose ether products are carbohydrate polymers which dissolve in cold water (and in some instances in certain organic solvents) by swelling and subsequent hydration. There is no sharp solubility limit such as occurs in the dissolution of ionizing salts. The concentration of METHOCEL™ in solution is usually limited by the viscosity that a manufacturer is equipped to handle. It also depends on the viscosity and chemical type of METHOCEL™ product used. Solutions of low-viscosity products can be made at 10% to 15% concentration while high-viscosity products have a normal limit at 2% to 3% concentration.

The form of METHOCEL™ cellulose ether product chosen (powder, surface-treated powder or granules) influences the techniques used to make solutions. Surface-treated and granular products can be added directly to aqueous systems. They disperse readily with mild agitation and dissolve (build viscosity) gradually under neutral conditions. The dissolution rate of surface-treated products can be increased by adjusting to an alkaline pH after dispersing the powder in water. Although untreated METHOCEL™ powders are soluble in cold water, they must first be thoroughly dispersed in the water to prevent lumping.

Working with Surface-Treated Dispersible Powders

In many applications, the combination of easy dispersion in cold water and rapid hydration (viscosity build) is desirable.

Surface-treated METHOCEL™ powders are chemically treated so that they become temporarily insoluble in cold water. This allows the METHOCEL™ product to be added to a formulation and dispersed at relatively low shear without any significant initial increase in viscosity.

This “time delay” of hydration or viscosity build is a function of the level of surface treatment as well as temperature, pH of the system, and concentration of the METHOCEL™ product. Normally, the concentration of METHOCEL™ in the system does not become a factor until the concentration exceeds 5% by weight (relative to water in the system). At higher concentrations, the time of hydration (referred to as delay time) is reduced. The delay time is generally reduced as temperature is raised. In many cases it is desirable to “trigger” viscosity build immediately following dispersion. Aqueous slurries can be held for 45 minutes and still remain usable in neutral systems. A trigger can be conveniently initiated by adding a small amount of a base, such as ammonium hydroxide, sodium bicarbonate, etc. If METHOCEL™ is dispersed in neutral water (pH approximately 7), there is adequate time for thorough dispersion. Addition of base to raise the pH to approximately 9 causes the hydration to be completed in just a few minutes.

For best results and to achieve maximum hydration, surface-treated powders should be added with good agitation to a neutral pH system. The system should be agitated thoroughly for a few minutes, followed by an adjustment of pH to 8.5 to 9.0 with continued agitation, until full viscosity is reached (usually 10 to 30 minutes). Once the pH has been shifted to the alkaline side (pH 8.5 to 9.0), allowing full and rapid solubilization of the surface-treated product, solutions will be stable over the pH range of 3 to 11.

The addition of a slurry to an alkaline pigment grind or filler dispersion, or the addition of a slurry to a basic pigment-latex formulation, provides rapid solubilization and uniform viscosity development. The addition of dry, alkaline pigments or fillers to a slurry on high-speed or low-speed mixing equipment also results in rapid solubilization and viscosity development.
Nutrition & Biosciences

Working With Untreated Powders
Although METHOCEL™ powders are soluble in cold water, they must first be thoroughly dispersed in the water to prevent lumping. In some applications, dispersion can be accomplished at ambient temperatures or in cold water by using an eductor funnel or high-shear mixer. However, if untreated powders are added directly to cold water without sufficient agitation, a lumpy solution may result. Lumping results from incomplete wetting of the individual powder particles. Only part of the powder dissolves, and a gelatinous membrane shields the remaining powder from complete hydration. Several dispersion techniques are commonly used and are described below. Each has advantages in certain applications.

Dispersion in Hot Water
Often called the “hot/cold” technique, this method takes advantage of the insolubility of METHOCEL™ cellulose ethers in hot water. The powder is first dispersed by mixing thoroughly with 1/5 to 1/3 of the total required volume of water that has been heated to above 90°C (194°F). Mixing continues until all particles are thoroughly wetted.

For complete solubilization, the remainder of the water is then added as cold water or ice to lower the temperature of the dispersion. Once the dispersion reaches the temperature at which that particular METHOCEL™ product becomes water soluble, the powder begins to hydrate and viscosity increases.

In some applications, it may be desirable to heat the entire volume of water, disperse the METHOCEL™ powder, and then cool the mixture while agitating until hydration is complete. It is very important, however, to have adequate cooling after wetting with hot water to ensure complete hydration and viscosity development.

Dispersion in Concentrated Salt Solutions
Both untreated and surface-treated METHOCEL™ cellulose ethers can be dispersed in concentrated salt solutions. Dissolution occurs when the brine is diluted with cold water.

Dispersion by Dry-Blending
Dry-blending involves mixing METHOCEL™ powder with other dry ingredients before adding the water component. Dry-blending separates the particles of METHOCEL™ cellulose ethers to allow thorough wet-out and complete hydration when water is added. The minimum ratio of other dry, powdered ingredients to METHOCEL™ powder varies from 7:1 to 3:1.
How to Prepare Solutions of METHOCEL™ Cellulose Ethers in Non-Aqueous Solvents and Non-solvent Media

Solvents
The solubility of METHOCEL™ cellulose ethers in non-aqueous media varies according to the nature and quantity of substituent groups on the anhydroglucose chain. When using a water-miscible, organic solvent, such as an alcohol or glycol, use a ratio of at least 5 to 8 parts solvent to 1 part METHOCEL™.

Dispersion in Non-solvent Media
Untreated METHOCEL™ cellulose ethers may also be dispersed in non-solvent media such as vegetable oil, propylene glycol, polyethylene glycol, glycerine, corn syrup, and high-fructose corn syrup. A ratio of 5 to 8 parts nonsolvent to 1 part METHOCEL™ is recommended to obtain a fluid slurry. The dispersion of METHOCEL™ in a non-solvent medium may then be added to cold water, or the cold water may be added to the dispersion.
Nutrition & Biosciences

Properties of METHOCEL™ Cellulose Ethers in Powder Form

METHOCEL™ cellulose ether products are white to slightly off-white powders which are essentially odorless and tasteless. The apparent density of the powders ranges from 0.25 to 0.70 g/cm³ (250–700 kg/m³).

Moisture Sorption

METHOCEL™ products sealed in their original shipping containers absorb little to no atmospheric moisture. Once a container is opened, however, there is pickup of moisture from the air. When “exposed” METHOCEL™ cellulose ether is weighed, a portion of the total weight, therefore, may be water. Such weight must be corrected for moisture content to ensure that the proper weight of METHOCEL™ is used to give the desired viscosity. The moisture sorption rates for the various METHOCEL™ grades are very similar to one another.

Resistance to Microorganisms

An important property of METHOCEL™ cellulose ether products is their high resistance to attack by microorganisms. METHOCEL™ products with higher degrees of substitution are especially resistant to enzymes. The fact that virtually all METHOCEL™ ethers pass through the intestinal tract essentially unchanged attests to the stability of these products to a wide range of biochemical and enzymatic systems.

As the cellulose is modified by substitution with various radicals, such as alkyl and hydroxyalkyl groups, resistance to microbial attack increases. Several researchers have reported that the degree of substitution (D.S.) of water soluble cellulose derivatives was a primary factor, with a threshold D.S. value of 1.0 required for protection. Because METHOCEL™ cellulose ether products have excellent uniformity of substitution, with a D.S. much higher than 1.0, they possess excellent resistance to microbial attack.
Properties of Solutions of METHOCEL™ Cellulose Ethers

Molecular Weight/Viscosity Relationships

The viscosity of an aqueous solution of METHOCEL™ cellulose ether is proportional to the molecular weight or chain length of the specific METHOCEL™ product used. Commercial designations of METHOCEL™ products are based on viscosity values determined in water at 20°C, with a concentration of 2% METHOCEL™. The measurement methods used are described in the current product specifications.

The table below provides further information regarding the correlation of number average molecular weight with the commercial viscosity designation. One characteristic of polymers is their molar weight distribution. Different methods of calculating average molecular weight numbers are available. The common technology for determining these values is size exclusion chromatography (SEC) coupled with multi-angle-laser-light-scattering (MALLS). The number average molecular weight (Mn) is the total weight of the sample divided by the number of molecules in the sample. The weight average molecular weight (Mw) also takes the weight of each molecule into account. Mw will generally be 3 to 10 times the Mn.

The intrinsic viscosity [\(\eta\)] (also known as Staudinger Index) represents the hydrodynamic volume for each gram of the polymer and is determined by viscosimetry. Here the specific viscosity divided by the concentration is extrapolated to infinite dilution.

Effect of Concentration on Viscosity

Most formulations require a predetermined product viscosity of METHOCEL™ cellulose ether. The figure on page 8 shows how the concentration of METHOCEL™ products of varying viscosity affects the aqueous solution viscosity at 20°C. The measurements were made using an Ubbelohde viscometer (ASTM D2363). Data for both low and high molecular weight METHOCEL™ products are shown and represent the average material found within a viscosity specification.

This figure is plotted on an 8th root scale, not a logarithmic scale. The 8th root of the viscosity is a roughly linear function of the concentration. The equation which expresses the illustrated approximate relationship between solution viscosity and polymer concentration is \(\alpha^{1/8} = (C \cdot \alpha) + 1\), where \(\alpha\) is the solution viscosity in millipascal-seconds, \(C\) is the polymer concentration in solution (expressed in percent), and \(\alpha\) is a constant specific to the molecular weight. The value of \(\alpha\) may be calculated by substitution and may then be used to calculate the approximate viscosity at the desired concentration.

For example, for a 4,000 mPa·s product, \((4,000)^{1/8} = (C \cdot \alpha) + 1\). Solving for \(\alpha\) yields a value of 0.910. For a 1,500 mPa·s product, \((1,500)^{1/8} = (C \cdot \alpha) + 1\). Solving for \(\alpha\) yields a value of 0.747. Having calculated \(\alpha\) for a particular METHOCEL™ product, this value can be used to calculate viscosity at other concentrations.

To find the line for any intermediate grade, locate the desired 2% viscosity above 2% on the abscissa and draw a straight line to the point of origin.

Viscosity of Methylcellulose of Various Molecular Weights

<table>
<thead>
<tr>
<th>Viscosity grade, 2%, 20°C, mPa·s</th>
<th>Number average degree of polymerization</th>
<th>Number average molecular weight (Mn)</th>
<th>Intrinsic viscosity ((\eta)), dL/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>53</td>
<td>10,000</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>13,000</td>
<td>14</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>20,000</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>140</td>
<td>26,000</td>
<td>2.6</td>
</tr>
<tr>
<td>400</td>
<td>220</td>
<td>41,000</td>
<td>3.9</td>
</tr>
<tr>
<td>1,500</td>
<td>340</td>
<td>63,000</td>
<td>5.7</td>
</tr>
<tr>
<td>4,000</td>
<td>460</td>
<td>86,000</td>
<td>7.5</td>
</tr>
<tr>
<td>8,000</td>
<td>580</td>
<td>110,000</td>
<td>9.3</td>
</tr>
<tr>
<td>15,000</td>
<td>650</td>
<td>120,000</td>
<td>11.0</td>
</tr>
<tr>
<td>19,000</td>
<td>750</td>
<td>140,000</td>
<td>12.1</td>
</tr>
<tr>
<td>40,000</td>
<td>950</td>
<td>180,000</td>
<td>15.0</td>
</tr>
<tr>
<td>75,000</td>
<td>1,160</td>
<td>220,000</td>
<td>18.4</td>
</tr>
</tbody>
</table>
Blending for Intermediate Viscosity

METHOCEL™ products of the same substitution type, but of different viscosity grades, can be blended to obtain an intermediate viscosity grade. The figure to the right is a blending chart that can be used for this purpose. To use the chart, mark the viscosity of one material along the left axis (Scale A) and the viscosity of the other material along the right axis (Scale B). Connect the two points in a straight line that crosses the graph. In the example shown, the viscosities of the starting materials are 400 mPa·s on the left and 15,000 mPa·s on the right. Now find the desired final viscosity on either axis and draw a horizontal line that intersects with the first line. From this intersection point, draw a vertical line down to the bottom scale. The number of that scale shows the percentage of Scale B Material needed in the blend. In this example, 4,000 mPa·s is the desired final viscosity. So the required blend is 60% of the 15,000 mPa·s (Scale B) material and 40% of the 400 mPa·s (Scale A) material.

The relationship may be expressed mathematically as: $(\eta B)^{1/8} = x_1(\eta_1)^{1/8} + x_2(\eta_2)^{1/8}$, where x_1 and x_2 are the weight fractions of components one and two, respectively. The example on the chart shows that 60% of 15,000 mPa·s material and 40% of the 400 mPa·s material are needed to make a blend having a viscosity of 4,000 mPa·s.

Effect of pH on Viscosity

Because METHOCEL™ products are nonionic, the viscosities of their solutions are generally stable over a wider pH range than are the viscosities of gums that are ionic in nature. Outside the range of pH 3 to 11, however, there may be a gradual loss of viscosity at higher temperatures or after long periods of standing, especially with high-viscosity solutions. Solutions of METHOCEL™ cellulose ethers in acids or in strong caustic solutions will decrease in viscosity. This factor should be considered when determining the shelf life of products.
Properties of METHOCEL™ Cellulose Ethers in Powder Form

Effect of Additives on Viscosity
In the preparation of formulations, viscosities may occasionally result which are considerably higher than expected. This phenomenon can be caused by the interaction of METHOCEL™ with one or more of the formula ingredients. As a result, it may be possible to use less thickener and still have adequate viscosity.

This effect usually passes through a maximum that is dependent on the concentration of the interacting materials and on the presence of other ingredients such as pigments, latex particles, or preservatives.

Effect of Freezing on Solutions
Solutions of METHOCEL™ cellulose ether products do not undergo separation into phases upon freezing. There is no separation of fluid layers (syneresis) or formation of insoluble precipitates or haze. This lack of phase separation on freezing is particularly important in frozen food items. As solutions of METHOCEL™ cellulose ether products are cooled, solubilization increases, as evidenced by increasing viscosity and improved clarity of solutions. When the solutions freeze, part of the water is held in the latent supercooled state and does not freeze. The heat normally released on freezing (heat of fusion) is decreased by the amount of the super cooling.

Defoamers for Aqueous Solutions
The foaming of solutions of METHOCEL™ cellulose ethers is easily controlled by using foam stabilizers and defoamers.

Defoamer concentrations should be kept to the minimum required because these materials are generally low in water solubility. The choice of a defoamer depends on the type of other ingredients in the system. For defoaming complex systems, consultation with the supplier of defoamers is suggested.

Antifoam agents are extremely efficient surface-active compositions which displace other surface-active substances at the air/water interface. Their use, therefore, might interfere with the performance of METHOCEL™ products in applications where the mechanical properties of solution surface films is critical.

Preservatives for Aqueous Solutions
METHOCEL™ cellulose ethers normally do not require preservatives. They are not, however, antimicrobial agents. If contamination occurs, microorganism growth will not be inhibited.

To preserve solutions of METHOCEL™, addition of 0.05% to 0.15% of DOWICIDE™ A antimicrobial or DOWICIL™ 75 preservative is suggested. More information on these products is available upon request. For regulated uses, the appropriate permitted preservative should be used.

Compatibility of Aqueous Solutions
The methylcellulose and hypromellose molecules are nonionic and are not precipitated as insoluble salts by multivalent metal ions. However, METHOCEL™ cellulose ethers can be salted out of solution when the concentration of electrolytes or other dissolved materials exceeds certain limits. This is caused by competition of the electrolytes for water and results in reduced hydration of the cellulose ether.

Water-insoluble materials such as pigments, fillers, etc. will not adversely affect METHOCEL™ cellulose ethers. Actually, solutions of METHOCEL™ often serve as excellent dispersing media for such materials. Other water-soluble substances, such as starches, glues, and resins, may or may not be compatible with METHOCEL™. Tests should be run on these materials to determine compatibility. Because METHOCEL™ cellulose ether products are not soluble in concentrated salt solutions, these media can be used as non-solvent dispersing media for METHOCEL™ products. Subsequent dilution reduces the salt concentration to a level that allows dissolution of the METHOCEL™ product.
Controlling Gel Temperature
The specific temperature at which thermal gelation occurs (the incipient gelation temperature or IGT) and the firmness of the gel are governed by the nature and quantity of the substituent groups attached to the anhydroglucose ring. Thus, gelation and the gel firmness vary with each type of cellulose ether. The molecular weight of the particular METHOCEL™ product selected has little effect on the gel temperature. However, increasing the concentration of the solution lowers the gel temperature.

Gelation Temperature as a Function of Concentration

The Effects of Heating Rate and Agitation on Gelation
Accurate measurement of gelation temperature requires care because it is a function of the rate of heating and the rate of shear. Both a high rate of shear and a fast heating rate result in an apparently high gel temperature.

Agitation also affects the strength of the gel. Continued rapid agitation during gelation may break down the gel structure and alter both the texture and strength of the gel. For maximum development of gel strength, heat the solution well above the gelation temperature under quiescent conditions.

Gel Strength and Texture
The texture and strength of gels produced by heating solutions of METHOCEL™ cellulose ethers varies with the product type, viscosity grade, and concentration of METHOCEL™ used. In general, the strength of the gel increases sharply as molecular weight increases and gradually becomes constant at or above a viscosity of 400 mPa·s. Gel strength also increases with increasing concentration.

Interfacial Gelation
In addition to bulk-phase gelation, METHOCEL™ cellulose ethers also exhibit interfacial or surface gelation phenomena as a result of their surfactant nature. Interfacial gelation plays an important role in many applications where a protective colloid, emulsification, or surfactant function is desirable. Examples include: suspension polymerization of vinyl chloride; aqueous foam stabilization in shampoos, bubble baths; and the stabilization of non-dairy whipped toppings and salad dressings.

To achieve thermal gelation, concentrations of 1.5 wt % are generally necessary. However, even at concentrations as low as 0.001 wt %, many METHOCEL™ products exhibit surface thermal gelation due to the migration of polymer molecules to the air/water interface.

The equilibrium concentration of METHOCEL™ products at any given interface depends upon the nature of the interface, presence of other solvents, temperature, and potential for formation of associative structures with other surfactants. However, the concentration of METHOCEL™ at an interface can be orders of magnitude greater than that presumed to be present in the bulk phase. As a result, surface film formation (surface gelation) occurs.

Surface gelation (filming) occurs very rapidly in many solutions of METHOCEL™ products whether dilute or concentrated. This effect is most evident (and troublesome) when one employs du Nouy tensiometry to determine surface tension.

Generally speaking, increasing the molecular weight, concentration, or temperature of a solution of METHOCEL™ will promote the onset of surface gelation just as in thermal gelation.
Effect of Additives on Thermal Gelation
Additives may either increase or decrease thermal-gelation temperature, depending on whether the additive exhibits a coagulant or a solubilizing effect on the METHOCEL™ product. For example, solutes such as ethanol, PEG 400, and propylene glycol all raise the gel points of METHOCEL™ products, which is due to the solubilizing effect the solutes impart. Additives such as glycerin, sorbitol, and most salts lower gel points by lowering the solvency of the aqueous system, resulting in a more rapid dehydration of the METHOCEL™ product.

Properties of Films of METHOCEL™ Cellulose Ethers
High-strength, water-soluble films, supported or unsupported, may be rolled, cast, or extruded from formulations of METHOCEL™ cellulose ether products. These clear, smooth films or coatings are impervious to oils, greases, and most solvents. They are also effective binders, even when loaded with inert materials. The need for a plasticizer may be more pertinent when using low viscosity 5 mPa·s METHOCEL™ cellulose ethers because of lower film elongation properties. This can be more acute if drying temperatures are too high.

Effect of Additives on Film Solubility
The water solubility of films and coatings of METHOCEL™ cellulose ethers can be altered by the use of cross-linking compounds and resins. The degree of insolubility can be controlled by the choice and quantity of a cross-linking reagent. All urea formaldehyde, melamine formaldehyde, and resorcinol formaldehyde resins can be used. Dialdehydes such as glyoxal are also effective. Supplier literature should be consulted for selection of catalysts and curing compounds.

Resistance of Films to Solvents
Films and coatings of METHOCEL™ are unaffected by animal and vegetable oils, greases, and petroleum hydrocarbons.

Properties of Unplasticized Films of METHOCEL™ Cellulose Ethers

<table>
<thead>
<tr>
<th>PROPERTIES*</th>
<th>METHOCEL™ A15 LV</th>
<th>METHOCEL™ E15 LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>1.39</td>
<td>1.29</td>
</tr>
<tr>
<td>Area factor</td>
<td>24 000 in² / lb / mil</td>
<td>25 860 in² / lb / mil</td>
</tr>
<tr>
<td>Moisture vapor transmission rate, 100°F (38°C), 50% RH</td>
<td>67.5 g / 100 in² / 24 h / mil</td>
<td>65 g / 100 in² / 24 h / mil</td>
</tr>
<tr>
<td>Oxygen transmission rate, 75°F (24°C)</td>
<td>25 cm³ / 100 in² / 24 h / mil</td>
<td>70 cm³ / 100 in² / 24 h / mil</td>
</tr>
<tr>
<td>Tensile strength, 75°F (24°C), 50% RH</td>
<td>9 000 lb / in² (62 MPa) ± 10%</td>
<td>10 000 lb / in² (69 MPa) ± 10%</td>
</tr>
<tr>
<td>Elongation, 75°F (24°C), 50% RH</td>
<td>5-15%</td>
<td>5-15%</td>
</tr>
<tr>
<td>Stability to ultra violet light, 500h, Fadeometer exposure</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Resistance to oils and most solvent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Ultraviolet transmission (2 mil film)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 nm</td>
<td>55%</td>
<td>82%</td>
</tr>
<tr>
<td>290 nm</td>
<td>49%</td>
<td>34%</td>
</tr>
<tr>
<td>210 nm</td>
<td>26%</td>
<td>6%</td>
</tr>
</tbody>
</table>

*Typical properties, not to be construed as sales specifications. Data based on a mil dry film
Nutrition & Biosciences

Analytical Methods

Measuring Viscosity
Certain precautions must be observed for the accurate measurement of the viscosity of solutions of METHOCEL™ cellulose ethers because they exhibit a nonlinear shear stress/shear rate relationship, which results in pseudoplastic viscosity behavior at most shear rates.

DuPont employs the ASTM reference method (D1347 and D2363) as its standard procedure for non-pharmaceutical grades while pharmaceutical grades are measured in compliance with the USP. This method involves the use of Ubbelohde viscometers, one type for low viscosities and another for high viscosities. The Ubbelohde viscometer is a precision device which requires only a small test sample.

For measuring low viscosity, the appropriate capillary tube size is chosen to obtain a flow time of 50 to 150 seconds (see table to the right). The viscometer is placed in a 20°C bath, and the length of time required to deliver a given volume through the capillary tube is measured. The time in seconds is then converted to millipascalseconds (mPa·s). Detailed procedures are given in current ASTM standards D1347 and D2363. The most reproducible viscosities are obtained by cooling to 4°C and holding for at least one-half hour before testing at 20°C.

Viscosity may also be determined using a rotational viscometer such as the Brookfield model LVF† viscometer. When the viscosity of a solution is less than 500 mPa·s, the viscosity is less dependent on shear, and the solution may be regarded as near-Newtonian. The apparent viscosity of a solution of higher viscosity will be highly dependent on the rate of shear, decreasing as the rate of shear is increased.

The rotational instrument should be calibrated against standard oils. It’s important to note, however, that there is no direct correlation between Ubbelohde and Brookfield measurements for non-Newtonian liquids. For details regarding analysis methods, please contact your local salesperson for METHOCEL™ cellulose ethers.

Handling Considerations
Material Safety Data Sheets/Safety Data Sheets for METHOCEL™ products are available from The DuPont to help you further satisfy your own handling, disposal, and safety needs and those that may be required by government regulations. Such information should be requested prior to handling or use. The following comments are general and are not a substitute for the detailed safety information found in the Material Safety Data Sheet/Safety Data Sheet.

Safety Considerations
METHOCEL™ cellulose ether products resemble the naturally occurring plant in many of their chemical, physical, and functional properties. All of these materials possess a basic carbohydrate structure.

METHOCEL™ products have had extensive evaluation and testing in both acute and long-term feeding studies in a number of species, including humans. Their many years of use in a wide variety of food items attests to the safety of METHOCEL™ Premium products.

Although dust from METHOCEL™ cellulose ether products could conceivably cause temporary mechanical irritation to the skin and eyes under extreme conditions and may be considered a nuisance dust if inhaled, the products are considered to present no significant health hazard in handling. Please review the handling precautions within the Material Safety Data Sheet/Safety Data Sheet for more information.

Capillary Tubes for Measuring Viscosity

<table>
<thead>
<tr>
<th>Viscosity mPa·s</th>
<th>Size of Heavy Wall Tubing, inside diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low viscosity</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>25</td>
<td>1.8 mm</td>
</tr>
<tr>
<td>100</td>
<td>2.4 mm</td>
</tr>
<tr>
<td>400</td>
<td>3.2 mm</td>
</tr>
<tr>
<td>High viscosity</td>
<td></td>
</tr>
<tr>
<td>1,500</td>
<td>5.0 mm</td>
</tr>
<tr>
<td>4,000</td>
<td>6.0 mm</td>
</tr>
<tr>
<td>8,000</td>
<td>7.5 mm</td>
</tr>
<tr>
<td>15,000</td>
<td>10.0 mm</td>
</tr>
<tr>
<td>50,000</td>
<td>15.0 mm</td>
</tr>
<tr>
<td>75,000</td>
<td>15.0 mm</td>
</tr>
</tbody>
</table>
Flammability
Cellulose ether products are organic polymers that will burn when exposed to heat and a sufficient oxygen supply. Fires can be extinguished by conventional means, avoiding any raising of dust by strong water jets. DuPont recommends the use of water spray, carbon dioxide, or powder extinguishers.

Storage
Caution: A fine dust of this material is capable of forming an explosive mixture with air. Powder samples should not be exposed to temperatures above 135° to 145°C. Samples may decompose and lead to a possible dust explosion. As in storage of any dusts or fine powders, good housekeeping is required to prevent dusts in air from reaching possibly explosive levels. When handling in large quantities or in bulk, the general precautions outlined in NFPA 63, "Prevention of Dust Explosions in Industrial Plants," and in NFPA bulletins 68, 69, and 654 are recommended.

With METHOCEL™ cellulose ether products with particle sizes of 74 µm or less (finer than 200 mesh), critical levels are reached at concentrations of 28 g/m³ (0.03 oz/ft³). The minimum ignition energy required to cause a dust explosion is 28mJ. Static from a human body has about 25mJ. This is normally not enough energy to ignite the powder.

As with any organic chemical material, METHOCEL™ cellulose ethers should not be stored next to peroxides or other oxidizing agents.

Accidental Spills and Housekeeping
Solutions of METHOCEL™ cellulose ethers are slippery. To prevent employee falls and injury, floor spills of dry powder should be thoroughly vacuumed or swept up. Any slight residual product on the walls or floor can then be flushed with water into a sewer. If the spill is a viscous solution, it should be further diluted with cold water before disposal. Likewise, accumulation of dust should be avoided to control this hazard.

Disposal
Despite the very slow rate of biodegradation, cellulose ether products should not present any hazard in the waste/soil compartment. Their behavior is similar to wheat flour or sawdust. Although DuPont studies using standard procedures showed no 5-day, 10-day, or 20-day BOD values, activated sludge studies with (14C) methylcellulose showed that methylcellulose was 96% degraded or otherwise removed from solution in 20 days. Thus, METHOCEL™ cellulose ethers should present no ecological hazard to aquatic life.

Because METHOCEL™ cellulose ether products and their aqueous solutions present no significant ecological problems, they can be disposed of by industrial incineration or in an approved landfill, providing regulations are observed. Incineration should be done under carefully controlled conditions to avoid the possibility of a dust explosion. Customers are advised to review their local, state, provincial or national regulations governing the disposal of waste materials to determine appropriate means of disposal in their area.

Customer Notice
DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Chemical Inventory
METHOCEL™ products, methylcellulose and hydroxypropyl methylcellulose, comply with all applicable rules and orders under Toxic Substances Control Act PL94-469. The Chemical Abstracts Services Registry No. (CAS) is 9004-67-5 for methylcellulose and 9904-65-3 for hydroxypropyl methylcellulose.

METHOCEL™ products have also been reported for the following inventories:
• European Inventory of Existing Chemical Substances (EINECS)
• Australia Inventory of Chemical Substances (AICS)
• Ministry of International Trade and Industry Inventory (MITI, the Japanese inventory)
• Canadian Domestics Substances List (DSL)
Many countries are in the midst of creating new chemical inventories.
The information contained herein is based on data known to DuPont or its affiliates at the time of preparation of the information and believed by them to be reliable. This is business-to-business information intended for food, beverage and supplement producers, and is not intended for the final consumer of a finished food, beverage or supplement product. The information is provided “as is” and its use is at the recipient’s sole discretion and risk. It is the recipient’s sole responsibility to determine the suitability and legality of its proposed use of DuPont products for its specific purposes. Information and statements herein shall not be construed as licenses to practice, or recommendations to infringe, any patents or other intellectual property rights of DuPont or others.

DUPONT HEREBY EXPRESSLY DISCLAIMS (I) ANY AND ALL LIABILITY IN CONNECTION WITH SUCH INFORMATION, INCLUDING, BUT NOT LIMITED TO, ANY LIABILITY RELATING TO THE ACCURACY, COMPLETENESS, OR USEFULNESS OF SUCH INFORMATION, AND (II) ANY AND ALL REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO SUCH INFORMATION, OR ANY PART THEREOF, INCLUDING ALL REPRESENTATIONS AND WARRANTIES OF TITLE, NONINFRINGEMENT OF COPYRIGHT OR PATENT RIGHTS OF OTHERS, MERCHANTABILITY, FITNESS OR SUITABILITY FOR ANY PURPOSE, AND WARRANTIES ARISING BY LAW, STATUTE, USAGE OF TRADE OR COURSE OF DEALING.

DuPont™, the DuPont Oval Logo, and all trademarks and service marks denoted with ™, SM or ® are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted. © 2020 DuPont.